The generator matrix

 1  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1 4X  1  1  1 3X  1  1  1  1  1  1  1 3X  1  1  1  0 4X  1  1  1  1  1  0 3X  1  1  1  1  1  1  1  1  1  1  1  1  1 3X  1 2X  1  1  1 4X  1  1  1  1  1  1  X  1  1 2X  1  1  1  1  1  1 2X  0  1  1  1  1  1  0  X  1  1  1  1 4X  1  1  1
 0  1  0 3X 2X  X  1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4  2 2X+4 X+3  3  1 X+4 4X+2  1 X+3 4X+3  0  1  4  2 2X+2  1 4X+1 4X+4 4X  1 X+4 4X+4 3X+3  1  1 4X  1 3X+4 2X+4 3X+1  1  1 4X+3 4X+1 2X+4  0 3X+4 2X+1 X+4  X 2X+2  3  2 2X+3 3X+2  1  X  1 4X 2X+2 3X+3  0 X+3 X+4 2X 3X+1  3 2X+4  1  3 4X+3  1 2X+1 4X 4X+2 2X+1 2X 4X+1  1  X X+2 2X+2 3X+2 2X+3 4X+3  1  1  X X+4 4X+4 3X  1 4X+4 3X 3X
 0  0  1 3X+1  2  4 X+4 3X+4 4X+4 3X+2 3X+3  X X+2 2X+2 3X X+1 4X+3  2  1  0  1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4  1 4X+3 3X 3X+4 4X+4 2X  3 3X+2 3X+1 3X+4 X+3 2X+1  3 2X 3X 4X+4 4X+4 2X+1 4X+3 3X+1 3X+1  2 3X+2  2 2X+1  X X+3 3X+1 X+1 4X+3 4X 2X+4 2X+4 3X 2X+2  1  4 4X X+3  1 X+1  4 4X+3 4X 3X+3 4X+2 2X+3 X+3 4X+3  0  1 3X+4  1  1  0 3X+4  4 2X  3 3X+1 3X+4 2X+4 X+4  3 4X 2X+3 4X 2X+3 2X+2

generates a code of length 98 over Z5[X]/(X^2) who�s minimum homogenous weight is 381.

Homogenous weight enumerator: w(x)=1x^0+780x^381+1100x^382+380x^383+700x^384+128x^385+1640x^386+1740x^387+460x^388+480x^389+248x^390+1160x^391+1120x^392+140x^393+280x^394+164x^395+620x^396+820x^397+280x^398+120x^399+24x^400+580x^401+760x^402+120x^403+300x^404+12x^405+360x^406+240x^407+80x^408+120x^409+44x^410+360x^411+220x^412+40x^413+4x^430

The gray image is a linear code over GF(5) with n=490, k=6 and d=381.
This code was found by Heurico 1.16 in 0.726 seconds.