The generator matrix 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 4X 1 1 1 3X 1 1 1 1 1 1 1 3X 1 1 1 0 4X 1 1 1 1 1 0 3X 1 1 1 1 1 1 1 1 1 1 1 1 1 3X 1 2X 1 1 1 4X 1 1 1 1 1 1 X 1 1 2X 1 1 1 1 1 1 2X 0 1 1 1 1 1 0 X 1 1 1 1 4X 1 1 1 0 1 0 3X 2X X 1 3X+2 3X+3 3X+1 2X+1 4X+1 3X+4 2 2X+4 X+3 3 1 X+4 4X+2 1 X+3 4X+3 0 1 4 2 2X+2 1 4X+1 4X+4 4X 1 X+4 4X+4 3X+3 1 1 4X 1 3X+4 2X+4 3X+1 1 1 4X+3 4X+1 2X+4 0 3X+4 2X+1 X+4 X 2X+2 3 2 2X+3 3X+2 1 X 1 4X 2X+2 3X+3 0 X+3 X+4 2X 3X+1 3 2X+4 1 3 4X+3 1 2X+1 4X 4X+2 2X+1 2X 4X+1 1 X X+2 2X+2 3X+2 2X+3 4X+3 1 1 X X+4 4X+4 3X 1 4X+4 3X 3X 0 0 1 3X+1 2 4 X+4 3X+4 4X+4 3X+2 3X+3 X X+2 2X+2 3X X+1 4X+3 2 1 0 1 2X X+2 2X+3 X+3 X+4 2X+3 X+1 2X+4 1 4X+3 3X 3X+4 4X+4 2X 3 3X+2 3X+1 3X+4 X+3 2X+1 3 2X 3X 4X+4 4X+4 2X+1 4X+3 3X+1 3X+1 2 3X+2 2 2X+1 X X+3 3X+1 X+1 4X+3 4X 2X+4 2X+4 3X 2X+2 1 4 4X X+3 1 X+1 4 4X+3 4X 3X+3 4X+2 2X+3 X+3 4X+3 0 1 3X+4 1 1 0 3X+4 4 2X 3 3X+1 3X+4 2X+4 X+4 3 4X 2X+3 4X 2X+3 2X+2 generates a code of length 98 over Z5[X]/(X^2) who´s minimum homogenous weight is 381. Homogenous weight enumerator: w(x)=1x^0+780x^381+1100x^382+380x^383+700x^384+128x^385+1640x^386+1740x^387+460x^388+480x^389+248x^390+1160x^391+1120x^392+140x^393+280x^394+164x^395+620x^396+820x^397+280x^398+120x^399+24x^400+580x^401+760x^402+120x^403+300x^404+12x^405+360x^406+240x^407+80x^408+120x^409+44x^410+360x^411+220x^412+40x^413+4x^430 The gray image is a linear code over GF(5) with n=490, k=6 and d=381. This code was found by Heurico 1.16 in 0.726 seconds.